Abstract
Bending/tension mechanics is one of the core issues for nanowires in flexible free-standing transport and sensor applications, but it remains a challenge to tailor the mechanical performance beyond the inherent properties. Herein, based on structure engineering, silicon-based Mn5Si3@SiO2 nanocables are proposed and demonstrated as versatile nanosystems. Except for outstanding toughness, large ultimate strain, and great strength, they display diverse mechanical behaviors such as simplex elasticity, plasticity, and viscoelasticity under different external conditions. The tunable performances originate from synergetic effects between the core and shell components, like the atomic bonding transitional interface and space confinement, which induce optimizing internal stress distribution and the dislocation evolution mechanism in the core. The related mechanical performance is revealed carefully. The bending and tension dynamic picture, quantitative force curve, stress-strain dependence, and the corresponding lattice evolution are acquired by in/ex situ characterizations and measurements. These results contribute to nanowire mechanical design and also expand to strain-regulated three-dimensional multifunctional nanosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.