Abstract
Hydrogels are excellent materials for fabricating flexible electronic devices, such as flexible sensors. However, obtaining hydrogels with superior swelling capacity and good hydrophilicity suitable for use under extreme environments, such as cold and underwater conditions, is still challenging due to the occurrence of freezing and excessive swelling. Alternatively, hydrogels with antifreezing and antiswelling capacities exhibit minimal changes in their physical and chemical properties under extreme conditions with retained original performance, such as mechanical properties, conductivity, and adhesiveness, making them suitable for various applications. Accordingly, various multifunctional antifreezing/antiswelling hydrogels meeting practical application requirements have been developed thanks to the advancement of hydrogel technology. Examples include flexible sensors for monitoring various motion signals, such as changes during sports events. However, comprehensive reviews describing these hydrogels in terms of synthesis and application in sensors are still lacking. Herein, the design and synthetic strategies of antifreezing/antiswelling hydrogels reported in recent years are comprehensively analyzed along with their mechanisms and applications in flexible motion sensors. This review aims to provide a comprehensive understanding of the research of antifreezing/antiswelling hydrogels and offer valuable insights for researchers engaged in the development of advanced materials suitable for practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.