Abstract

Continuous - additive-multiplicative (AM) logic is considered, in which logical operations are replaced by algebraic operations («×» and «+») or operations with vectors, and binary variables «0» and «1» are replaced by continuous scalar ones («0- 1») or complex variables. To build this logic, a continuous analogue of the canonical form of Boolean logic is used in the form of a perfect disjunctive or conjunctive normal form (KAM logic). A feature of KAM logic is a continuous dependence on input variables and a potential variety of continuous logic functions. Based on the previously proposed «fuzzy» (distributed) continuous function, in the form of a superposition of «clear» functions, and the tunable QAM element circuit that implements it, this element is generalized to a network QAM element with several tunable outputs. The multiplication functions in this QAM element can be performed using a known memristor, which can be replaced by a memtransistor based on a field effect transistor. In quantum QAM networks, these elements are, respectively: «k-memristor» and «k-memtransistor». One of the options for a k-memtransistor is a composite hybrid spin-field-effect transistor based on a planar spin valve with magnetic memory and a field-effect transistor with a ferroelectric memory. It is noted that the main technological problem of quantum QAM networks based on such a hybrid spin transistor is the creation of planar conducting and ferromagnetic elements based on ultrathin metallic and ferromagnetic films on silicon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call