Abstract
Planar photonic structures, such as gratings and metasurfaces, are routinely used for beam steering, waveguide coupling, and light localization. However, conventional fabrication techniques that involve lithography are demanding in terms of time and cost. Much cheaper and simpler methods for surface patterning and formation of periodic surface structures are enabled by direct laser processing. Here, we demonstrate low-cost rapid fabrication of high-quality phase gratings based on the formation of laser induced periodic surface structures (LIPSS, or ripples) in Ge2Sb2Te5 (GST) thin films. Due to unique phase change properties of GST, the structures demonstrate strong modulation of refractive index with period controlled by the wavelength of laser irradiation. We study the formation of phase change LIPSS in a broad range of excitation wavelengths and observe transition between regimes with different orientations of generated ripples with respect to laser polarization.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have