Abstract

Manipulating matter at the nanometer scale to create desired plasmonic nanostructures holds great promise in the field of biomedical photoacoustic (PA) imaging. We demonstrate a strategy for regulating PA signal generation from anisotropic nano-sized assemblies of gold nanospheres (Au NSs) by adjusting the inter-particle connectivity between neighboring Au NSs. The inter-particle connectivity is controlled by modulating the diameter and inter-particle spacing of Au NSs in the nanoassemblies. The results indicate that nanoassemblies with semi-connectivity, i.e., assemblies with a finite inter-particle spacing shorter than the theoretical limit of repulsion between nearby Au NSs, exhibit 3.4-fold and 2.4-fold higher PA signals compared to nanoassemblies with no connectivity and full connectivity, respectively. Furthermore, due to the reduced diffusion of Au atoms, the semi-connectivity Au nanoassemblies demonstrate high photodamage threshold and, therefore, excellent photostability at fluences above the current American National Standards Institute limits. The exceptional photostability of the semi-connectivity nanoassemblies highlights their potential to surpass conventional plasmonic contrast agents for continuing PA imaging. Collectively, our findings indicate that semi-connected nanostructures are a promising option for reliable, high-contrast PA imaging applications over multiple imaging sessions due to their strong PA signals and enhanced photostability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.