Abstract

The helix angle, chirality, and radius of helical ribbons are predicted with a comprehensive, three-dimensional analysis that incorporates elasticity, differential geometry, and variational principles. In many biological and engineered systems, ribbon helicity is commonplace and may be driven by surface stress, residual strain, and geometric or elastic mismatch between layers of a laminated composite. Unless coincident with the principle geometric axes of the ribbon, these anisotropies will lead to spontaneous, three-dimensional helical deformations. Analytical, closed-form ribbon shape predictions are validated with table-top experiments. More generally, our approach can be applied to develop materials and systems with tunable helical geometries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.