Abstract
We propose a system of coupled quantum dots in proximity to a superconductor and driven by separate ac potentials to realize and detect Floquet Majorana fermions. We show that the appearance of Floquet Majorana fermions can be finely controlled in the expanded parameter space of the drive frequency, amplitude, and phase difference across the two dots. While these Majorana fermions are not topologically protected, the highly tunable setup provides a realistic system for observing the exotic physics associated with Majorana fermions as well as their dynamical generation and manipulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.