Abstract

We propose Floquet chiral topological superconducting systems hosting Floquet Majorana fermions, which consist of hexagonal lattices in proximity to superconductors with shining circularly polarized light. Specially for bilayer graphene system, we demonstrate that there exist three topological phases determined by certain parameters, namely, the amplitude and frequency of the induced light. The number of chiral Floquet Majorana edge states is confirmed by calculating Chern number analytically and energy spectrum in ribbon geometry. Moreover, this proposal is generalized to other hexagonal lattice systems, such as monolayer graphene and silicene. Notably, the parameter range of induced light to achieve the chiral Floquet Majorana edge states is experimentally feasible, and the corresponding Floquet Majorana fermions can be probed based on differential conductance using scanning tunneling spectroscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.