Abstract

Based on the first-principles method, we investigate the electronic structure of SnC/BAs van der Waals (vdW) heterostructure and find that it has an intrinsic type-II band alignment with a direct band gap of 0.22 eV, which favors the separation of photogenerated electron–hole pairs. The band gap can be effectively modulated by applying vertical strain and external electric field, displaying a large alteration of band gap via the strain and experiencing an indirect-to-direct band gap transition. Moreover, the band gap of the heterostructure varies almost linearly with external electric field, and the semiconductor-to-metal transition can be realized in the presence of a strong electric field. The calculated band alignment and the optical absorption reveal that the SnC/BAs heterostructure could present an excellent light-harvesting performance. Our designed heterostructure is expected to have great potential applications in nanoelectronic devices and photovoltaics and optical properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.