Abstract

Based on the first-principles method, we investigate the electronic structure of SnC/BAs van der Waals (vdW) heterostructure and find that it has an intrinsic type-II band alignment with a direct band gap of 0.22 eV, which favors the separation of photogenerated electron–hole pairs. The band gap can be effectively modulated by applying vertical strain and external electric field, displaying a large alteration of band gap via the strain and experiencing an indirect-to-direct band gap transition. Moreover, the band gap of the heterostructure varies almost linearly with external electric field, and the semiconductor-to-metal transition can be realized in the presence of a strong electric field. The calculated band alignment and the optical absorption reveal that the SnC/BAs heterostructure could present an excellent light-harvesting performance. Our designed heterostructure is expected to have great potential applications in nanoelectronic devices and photovoltaics and optical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.