Abstract

In this study, novel core-shell nanostructures were fabricated through a modified triaxial electrospinning process. These comprised a drug-protein nanocomposite coated with a thin cellulose acetate (CA) shell. They were generated through the simultaneous treatment of an outer solvent, an unelectrospinnable middle fluid, and an electrospinnable core solution in triaxial electrospinning. SEM and TEM results revealed that the core-shell nanofibers had linear and cylindrical morphologies with a diameter from 0.66 to 0.87 μm, and distinct core-shell structures with a shell thickness from 1.8 to 11.6 nm. The presence of a CA coating eliminated the initial burst release of ibuprofen seen from a monolithic drug-protein composite, and allowed us to precisely manipulate the drug release (for a 90% percentage) over a time period from 23.5 to 43.9 h in a tunable manner. Mathematical relationships between the processing conditions, the nanostructures produced, and their functional performance were elucidated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.