Abstract

Enzymes frequently use unimpressive functional groups such as weak carboxylic acids for efficient, highly selective catalysis including hydrolysis of acetals and even amides. Much stronger acids generally have to be used for such purposes in synthetic systems. We report here a method to position an acidic group near the acetal oxygen of 2-(4-nitrophenyl)-1,3-dioxolane bound by an artificial enzyme. The hydrolytic activity of the resulting artificial enzyme-cofactor complex was tuned by the number and depth of the active site as well as the hydrophobicity and acidity of the cofactor. The selectivity of the complex was controlled by the size and shape of the active site and enabled less reactive acetals to be hydrolyzed over more reactive ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.