Abstract

Summary Enzyme active sites afford an intricate interplay of functional groups to mediate complex organic and inorganic reactions. Many hydrolytic enzymes use a catalytic triad comprising three different functional residues—(Ser(-OH), Hist(-imidazole), Asp(-CO 2 H))—that catalyze the hydrolysis of numerous unique substrates. Inspired by this design, we have developed a simple one-step synthesis for preparing a new supported catalytic system in which the three reactive groups of the catalytic triad (alcohol, imidazole, and carboxylate) are incorporated into a single functional unit. These artificial active sites can be coupled to a solid-phase support (Merrifield resin) by copper(I)-catalyzed azide-alkyne cycloaddition "click chemistry," and their effectiveness as esterolysis catalysts was demonstrated. Furthermore, tuning the local hydrophobicity of the resin particles with an approach analogous to the native enzyme hydrophobic pocket increased the catalytic efficiency. Quantum mechanics and molecular dynamics computational modeling were used to probe the catalytic effect and suggested a concerted two-step mechanism and hydrophobic nanoenvironment similar to that of hydrolytic enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.