Abstract

The asymmetrical nested metamaterial, composed of two split-ring resonators (SRRs) and two embedded gallium arsenide (GaAs) islands placed in the two SRRs, has been elaborately designed on quartz substrate. Its tunable and switchable resonances at terahertz (THz) frequencies are numerically demonstrated here based on different conductivities of GaAs, which can be transformed from semiconductor to metallic state through appropriate optical excitation. Without photoexcitation, our designed metamaterial has three resonance peaks in the range of monitored frequency range, and they are located at 0.813, 1.269 and 1.722 THz, respectively. As the conductivity of the two GaAs islands increases, different new resonances appear and constantly strengthen. Finally, four new resonant points are generated, at 0.432, 0.948, 1.578 and 1.875 THz, respectively. At the same time, the metamaterial structure is changed from the original nested mode to a new integral mode. Applying reversible changing conductivity of semiconductor to push the conversion of resonance, this asymmetrical nested design provides a new instance in application and development of additional THz devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call