Abstract

We demonstrate high-contrast electromagnetically induced absorption (EIA) bright resonances on the D1 line of K39 with characteristics comparable to those of the electromagnetically induced transparency (EIT) dark resonances observed in the same conditions. EIA is produced by the interaction of a weak probe beam with the atomic ground state driven in a degenerate coherent superposition by either a co- or counter-propagating pump beam. We have obtained an order of magnitude increase of the EIA's contrast with respect to previous similar experiments, performed with other alkalis, without compromising its linewidth. Furthermore, we show that the magneto-optic resonances can be continuously tuned from EIT to EIA by changing the relative handedness of circular polarizations of pump and probe beams, or depending on whether they co- or counter-propagate. This opens new perspectives in the use of EIA in a broad range of physical domains and in a large wealth of potential applications in optics and photonics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.