Abstract
Experimental and theoretical investigations show the strong effect of the pump beam, spatially separated from the probe beam, on the probe's electromagnetically induced absorption (EIA) and nonlinear magneto-optical rotation (NMOR). Linearly polarized pump and probe laser beams are locked to the Fg = 2 → Fe = 3 transition of the 87Rb D2 line and pass a vacuum Rb gas cell coaxially. We show that the observed narrowing of EIA and NMOR resonances is due to the Ramsey effect. Linewidths of the resonances decrease when the size of the dark region between pump and probe lasers increases. Variation of the angle between pump and probe linear polarizations strongly influences the phases of atomic coherences generated by the pump beam and consequently the line-shapes of the probe EIA and NMOR resonances. Complete change of the resonance sign is possible if the phases of the ground state coherences, Δmg = 2, are altered by π. The central EIA fringe becomes less pronounced if the probe intensity increases, due to the larger probe contribution to atomic evolution. Ramsey-like interference is a manifestation of the evolution of ground state Zeeman coherences, required for EIA, in the dark region in the presence of a small magnetic field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics B: Atomic, Molecular and Optical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.