Abstract

Tumorigenicity and metastatic activity can be visually monitored in cancer cells that were labelled with stable fluorescence. The aim was to establish and validate local and distant spread of subcutaneously previously injected fluorescence transduced human tongue cancer cell lines of epithelial and mesenchymal phenotype in nude mice. A total of 32 four-week-old male athymic Balb/c nude mice were randomly allocated into 4 groups (n = 8). A single dose of 0.3 mL PBS containing 1 × 107 of four different cancer cell-lines (UM1, UM1-GFP, UM2, and UM2-RFP) was injected subcutaneously into the right side of their posterolateral back. Validity assessment of the labelled cancer cells' tumorigenicity was assessed by physical examination, imaging, and histology four weeks after the injection. The tumor take rate of cancer cells was similar in animals injected with either parental or transduced cancer cells. Transduced cancer cells in mice were easily detectable in vivo and after cryosection using fluorescent imaging. UM1 cells showed increased tumor take rate and mean tumor volume, presenting with disorganized histopathological patterns. Fluorescence labelled epithelial and mesenchymal human tongue cancer cell lines do not change in tumorigenicity or cell phenotype after injection in vivo.

Highlights

  • A fluorescent labelling of human oral cancer cell lines, stable over several generations, might provide the possibility to visually monitor their tumorigenicity and metastatic activity in vivo.Both green fluorescent protein (GFP) and red fluorescent protein (RFP) (GenTarget, Inc., San Diego, USA) have been extensively used to study cancer biology in animal models due to their stability after transduction [1]

  • In mice GFP/RFP labelled murine cancer cell lines were used to study the role of epithelial mesenchymal transition (EMT) in distant metastasis; it was detected that cells of epithelial and mesenchymal phenotype showed a fair share in the formation of distant metastasis [5]

  • Cancer metastasis and local cancer invasion are considered to be closely related to specific cell phenotypes and their dynamic transition [6,7,8]

Read more

Summary

Introduction

A fluorescent labelling of human oral cancer cell lines, stable over several generations, might provide the possibility to visually monitor their tumorigenicity and metastatic activity in vivo. Both green fluorescent protein (GFP) and red fluorescent protein (RFP) (GenTarget, Inc., San Diego, USA) have been extensively used to study cancer biology in animal models due to their stability after transduction [1]. In mice GFP/RFP labelled murine cancer cell lines were used to study the role of epithelial mesenchymal transition (EMT) in distant metastasis; it was detected that cells of epithelial and mesenchymal phenotype showed a fair share in the formation of distant metastasis [5]. A negative in vitro interaction between GFP/RFP transduction and epithelial and/or mesenchymal phenotypes of human tongue cancer cell lines UM1 and UM2 has already been excluded previously, where it was detected that transduced UM1-GFP and UM2-RFP human

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call