Abstract

A hallmark of rheumatoid arthritis (RA) is the pseudo-tumoral expansion of fibroblast-like synoviocytes (FLSs), and the RA FLS has therefore been proposed as a therapeutic target. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has been described as a pro-apoptotic factor on RA FLSs and, therefore, suggested as a potential drug. Here we report that exposure to TRAIL-induced apoptosis in a portion (up to 30%) of RA FLSs within the first 24 h. In the cells that survived, TRAIL induced RA FLS proliferation in a dose-dependent manner, with maximal proliferation observed at 0.25 nm. This was blocked by a neutralizing anti-TRAIL antibody. RA FLSs were found to express constitutively TRAIL receptors 1 and 2 (TRAIL-R1 and TRAIL-R2) on the cell surface. TRAIL-R2 appears to be the main mediator of TRAIL-induced stimulation, as RA FLS proliferation induced by an agonistic anti-TRAIL-R2 antibody was comparable with that induced by TRAIL. TRAIL activated the mitogen-activated protein kinases ERK and p38, as well as the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway with kinetics similar to those of TNF-alpha. Moreover, TRAIL-induced RA FLS proliferation was inhibited by the protein kinase inhibitors PD98059, SB203580, and LY294002, confirming the involvement of the ERK, p38, and PI3 kinase/Akt signaling pathways. This dual functionality of TRAIL in stimulating apoptosis and proliferation has important implications for its use in the treatment of RA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.