Abstract

Gamma-secretase is a multiprotein complex composed of presenilin (PS), nicastrin (NCT), Aph-1, and Pen-2, and it catalyzes the final proteolytic step in the processing of amyloid precursor protein to generate amyloid-beta. Our previous results showed that tumor necrosis factor-alpha (TNF-alpha) can potently stimulate gamma-secretase activity through a c-Jun N-terminal kinase (JNK)-dependent pathway. Here, we demonstrate that TNF-alpha triggers JNK-dependent serine/threonine phosphorylation of PS1 and NCT to stimulate gamma-secretase activity. Blocking of JNK activity with a potent JNK inhibitor (SP600125) reduces TNF-alpha-triggered phosphorylation of PS1 and NCT. Consistent with this, we show that activated JNKs can be copurified with gamma-secretase complexes and that active recombinant JNK2 can promote the phosphorylation of PS1 and NCT in vitro. Using site-directed mutagenesis and a synthetic peptide, we clearly show that the Ser(319)Thr(320) motif in PS1 is an important JNK phosphorylation site that is critical for the TNF-alpha-elicited regulation of gamma-secretase. This JNK phosphorylation of PS1 at Ser(319)Thr(320) enhances the stability of the PS1 C-terminal fragment that is necessary for gamma-secretase activity. Together, our findings strongly suggest that JNK is a critical intracellular mediator of TNF-alpha-elicited regulation of gamma-secretase and governs the pivotal step in the assembly of functional gamma-secretase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call