Abstract

Vascular endothelial growth factor is a potent pro-angiogenic growth factor which is also known to alter tumor microenvironment by inhibiting dendritic cell differentiation and promoting accumulation of myeloid-derived suppressor cells. In the present study, we analyzed the modifications induced by intratumoral expression of sFLT-1, a soluble VEGF receptor, in a rat metastatic colon carcinoma model. We generated colon cancer cell lines stably expressing sFLT-1 or a mock construct. Human umbilical vein endothelial cells cultured with conditioned medium from sFLT-1-expressing tumor cells exhibit a significantly decreased survival, demonstrating the functionality of the secreted sFLT-1. In vivo, sFLT-1 expression induced a 30% decrease in microvessel density in 15-day old experimental liver metastasis from colon carcinoma. Tumor growth was inhibited by 63% and 52% in left and right liver lobes respectively within 25 days. In these tumors, sFLT-1 expression was associated with a decreased myeloid cell infiltration and a modification in the expression of several cytokines/chemokines. Altogether, these results suggest that VEGF trapping by sFLT-1 intratumoral expression results in reduced vascularization, tumor growth inhibition and modification of immune tumor microenvironment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.