Abstract

Herein, a drug-loading nanosystem that can in situ form drug depository for persistent antitumor chemotherapy and immune regulation is designed and built. The system (DOX@MIL-LOX@AL) is fabricated by packaging alginate on the surface of Doxorubicin (DOX) and lactate oxidase (LOX) loaded MIL-101(Fe)-NH2 nanoparticle, which can easily aggregate in the tumor microenvironment through the cross-linking with intratumoral Ca2+. Benefiting from the tumor retention ability, the fast-formed drug depository will continuously release DOX and Fe ions through the ATP-triggered slow degradation, thus realizing persistent antitumor chemotherapy and immune regulation. Meanwhile, LOX in the non-aggregated nanoparticles is able to convert the lactic acid to H2O2, which will be subsequently decomposed into ·OH by Fe ions to further enhance the DOX-induced immunogenic death effect of tumor cells. Together, with the effective consumption of immunosuppressive lactic acid, long-term chemotherapy, and oxidation therapy, DOX@MIL-LOX@AL can execute high-performance antitumor chemotherapy and immune activation with only one subcutaneous administration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.