Abstract

As a simple, effective and non-parameter analysis method, knn is widely used in text classification, image recognition, etc. [1]. However, this method requires a lot of calculations in practical applications, and the uneven distribution of training samples will directly lead to a decrease in the accuracy of tumor image classification. To solve this problem, we propose a method based on dynamic weighted KNN to improve the accuracy of classification, which is used to solve the problem of automatic prediction and classification of medical tumor images based on image features and automatic abnormality detection. According to the classification of tumor image characteristics, it can be divided into two categories: benign and malignant. This method can assist doctors in making medical diagnosis and analysis more accurately. The experimental results show that this method has certain advantages compared with the traditional KNN algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.