Abstract
In this paper, we propose a new scheme aimed for gastrointestinal (GI) tumor capsule endoscopy (CE) images classification, which utilizes sequential forward floating selection (SFFS) together with support vector machine (SVM). To achieve this goal, candidate features related to texture characteristics of CE images are extracted. With these candidate features, SFFS based on SVM is applied to select the most discriminative features that can separate normal CE images from tumor CE images. Comprehensive experiments on our present CE image data verify that it is promising to employ the proposed scheme to recognize tumor CE images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.