Abstract

This paper presents a method for detecting bleeding and tumors within capsule endoscopy (CE) images. Because CE can be used for visual, non-invasive examinations of the small bowel, it has recently become widely used. However, as a capsule progresses along the gastrointestinal tract, it collects vast quantities of images that make diagnosis a very time-consuming task. To address this problem, many computational approaches for anomaly detection have been proposed. Common to most approaches is the belief that color, texture, and shape are the most promising features for detecting anomalies within CE images. However, given that the requirements for each type of feature vary according to the anomaly, generally, it is essential to apply a complicated combination of techniques for multiple-feature extraction. In this study, in order to realize a scheme that covers the features of color, texture, and shape and can be applied to lesion areas of various sizes, a geometric image feature called local-contrast-enhanced higher-order local auto-correlation (LCE-HLAC) is proposed. Moreover, although the HSV color space is generally regarded as being appropriate for the analysis of CE images, imbalances in the distributions of utilized hue components limit discriminatory performance for normal and anomalous images. Accordingly, an image pre-processing method that uses a non-linear conversion model for the HSV color space is also proposed. Anomaly detection is implemented using a support vector machine classifier. The results of experiments, conducted with normal, bleeding, and tumor images obtained from 28 patients, demonstrate both the feasibility and superiority of the proposed method for both bleeding and tumor detection tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.