Abstract

Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. More and more studies have shown that the tumor immune microenvironment (TME) of TNBC is closely related to its poor prognosis and early metastasis. We try to explain how tumor-associate macrophages (TAMs), an important component of the TME, function in the matrix of TNBC. Therefore, we induced THP-1 cells to become M1-TAMs and M2-TAMs, investigated their influence on breast cancer cells. 82 TNBC paraffin samples were made into tissue microarrays. The expression of macrophages makers were measured by immunohistochemistry. Scratch assay, Transwell assay, CCK-8 cell proliferation assay were performed in the co-culture system of breast cancer cells lines and macrophages to observe the invasion and proliferation ability of breast cancer cell lines. Western Blot (WB) was performed to detect the expression of E-cadherin (CDH1) and N-cadherin (CDH2). M2-TAMs were more numerous than M1-TAMs in the matrix of TNBC cancer nests and associated with poor prognosis. M2-TAMs promoted the invasion, migration, and proliferation of TNBC cells. M1-TAMs had inhibitory effects. In MCF-7 cells, WB showed a decrease in CDH1 and an increase in CDH2. In MDA-MB-231 cells and BT549 cells, CDH2 expression was reduced and CDH1 expression was increased. All of the above results were statistically significant, p < 0.001. M2-TAMs were more numerous in TNBC and associated with poor prognosis. M2-TAMs promoted the invasion, migration, and proliferation of breast cancer cells. The mechanism may be related to the epithelial-mesenchymal transition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call