Abstract

The crosstalk between tumor microenvironment and cancer cells is emerging as a critical determinant in tumor progression. However, the underlying mechanism of tumor microenvironment-induced cancer development remains controversial. Here, our study provides evidence to suggest that tumor-associated macrophage (TAM) enrichment is found in chemoresistant prostatic tumor tissues. Those TAMs are demonstrated to promote chemoresistance and distant metastasis in prostatic cancer through secretion of CCL5. Mechanistically, TAM coculture or additional CCL5 can mediate the STAT3-dependent epithelial-mesenchymal transitionprocess, resulting in distant metastasis in prostatic cancer. Meanwhile, activation of STAT3 induced by CCL5 can mediate upregulation of the transcription factor Nanog, leading to drug resistance. In vivo study further demonstrated that blockade of STAT3 signals significantly reverses chemoresistance and suppresses lung metastasis in colorectal tumor-bearing mice, suggesting a novel strategy for clinical prostatic cancer treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.