Abstract
Dental pulp is an easily obtainable source of viable cells for potential use in peripheral nerve regeneration. We prepared artificial conditions for nerve regeneration using a silicone tube containing a collagen gel embedded with rat dental pulp cells, and we examined its effectiveness for repairing a gap in the rat facial nerve. Twelve days after transplantation, defective facial nerves connected with silicone tubes containing dental pulp cells were repaired more rapidly than control tubes containing the collagen gel alone. When a tube containing green fluorescent protein (GFP)-positive dental pulp cells was transplanted into a facial nerve gap in a GFP-negative rat, we observed regenerated nerves with GFP-positive cells at 2 weeks posttransplantation. The regenerated nerves included Tuj1-positive axons, RECA1 and GFP double-positive blood vessels, and S100 and GFP double-positive Schwann-like supportive cells. Osmium-toluidine blue staining revealed that the regenerated nerves contained myelinated fibers. Moreover, fluorescent retrograde tracing analysis by application of Fluoro-Gold into the regenerated nerves demonstrated the presence of Fluoro-Gold-positive motor neurons in the facial nucleus of the rat brain. These results suggest that the transplanted dental pulp cells formed blood vessels and myelinating tissue and contributed to the promotion of normal nerve regeneration.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have