Abstract
Understanding the dynamics of molecules with complex shapes is important as researchers develop advanced materials using hybrid molecules. This study applies a slip-spring model to visualize and quantify the entangled dynamics of rod-coil block copolymers. The parameters of the model are determined by matching with molecular dynamics simulation results. By monitoring the positions of polymers along the entanglement tube, rod-coil copolymers are shown to disfavor configurations where the rod occupies curved portions of the tube of randomly varying curvature created by the coil ends. This confirms that reptation of copolymers occurs by an activated mechanism and is the first demonstration of the activation barriers that have been previously inferred through diffusion measurements by simulation and experiment. The barriers to diffusion are further quantified by considering the curvilinear motion of ring polymers, and their effect on diffusion is quantitatively captured by considering one-dimensional motion along an entanglement tube with a rough free energy potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.