Abstract

Purpose: To develop a rapid method of patient scatter removal from cone beam (CB) projection images that requires no scatter measurement, physical modeling or strong assumptions regarding the spatial smoothness of the scatter distribution. Method and Materials: A modulator grid is placed between the imaged distribution and the detector that differentially frequency modulates primary and scattered photons. When photons travel through the grid, photons that originate directly from the CB source are modulated by a higher frequency than scattered photons that have more proximal, diffusely distributed sources. We employ non‐linear Fourier domain filtering to attenuate the contribution of scatter to the image spectrum. The theoretical validity of the method is verified using linear analysis of planar sources and its performance is evaluated using a simulator based on this analytical model. Results: Simulation experiments with an ideal modulator indicate that even unrealistically large amounts of scatter are almost entirely removed by this method. The recovered images are devoid of major artifacts and exhibit an RMS error of 10%. Conclusion: A disadvantage of the technique is that it will always produce a filtered image having at best 0.41 of the maximum detector resolution when maximum scatter rejection is desired. This is not a major issue in most medical X‐ray CB imaging applications using contemporary detector technology, especially since scatter often significantly reduces useful resolution. Conflict of Interest: Supported by Siemens Medical Solutions USA, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.