Abstract
This study investigates tsunami-like solitary waves impinging and overtopping an impermeable trapezoidal seawall on a 1:20 sloping beach. New laboratory experiments are performed for describing three typical cases: a turbulent bore rushes inland and subsequently impacts and overtops the seawall (Type 1); a wave directly collapses on the seawall and then generates overtopping flow (Type 2); and, a wave straightforwardly overtops the seawall crown and collapses behind the seawall (Type 3). A two-dimensional volume of fluid (VOF) type model called the COBRAS (COrnell BReaking And Structure) model, which is based on the Reynolds-Averaged Navier–Stokes (RANS) equations and the k– ε turbulence closure solver, is validated by experimental data and then applied to investigate wave dynamics for which laboratory data are unavailable. Additionally, a set of numerical experiments is conducted to examine the dynamic wave acting force due to waves impacting the seawall. Effects of wave nonlinearity and freeboard are elucidated. Special attention is given to a distinct vortex evolutionary behavior behind the seawall, in which the dynamic properties of entrapped air-bubbles are briefly addressed experimentally and numerically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.