Abstract

A 2D Lagrangian numerical wave model is presented and validated against a set of physical wave-flume experiments on interaction of tsunami waves with a sloping beach. An iterative methodology is proposed and applied for experimental generation of tsunami-like waves using a piston-type wavemaker with spectral control. Three distinct types of wave interaction with the beach are observed with forming of plunging or collapsing breaking waves. The Lagrangian model demonstrates good agreement with experiments. It proves to be efficient in modelling both wave propagation along the flume and initial stages of strongly non-linear wave interaction with a beach involving plunging breaking. Predictions of wave runup are in agreement with both experimental results and the theoretical runup law.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.