Abstract

Vinpocetine has long been used for cerebrovascular disorders and cognitive impairment. Based on the evidence that the translocator protein (TSPO, 18kDa) was expressed in activated microglia, while Vinpocetine was able to bind TSPO, we explored the role of Vinpocetine on microglia treated with lipopolysaccharide (LPS) and oxygen-glucose deprivation (OGD) in vitro. Our results show that both LPS and OGD induced the up-regulation of TSPO expression on BV-2 microglia by RT-PCR, western blot and immunocytochemistry. Vinpocetine inhibited the production of nitrite oxide and inflammatory factors such as interleukin-1β (IL-1β), IL-6 and tumour necrosis factor-α (TNF-α) in BV-2 microglia, in which cells were treated with LPS or exposed to OGD, regardless of the time Vinpocetine was added. Next, we measured cell death-related molecules Akt, Junk and p38 as well as inflammation-related molecules nuclear factor-κB (NF-κB) and activator protein-1 (AP-1). Vinpocetine did not change cell death-related molecules, but inhibited the expression of NF-κB and AP-1 in LPS-stimulated microglia, indicating that Vinpocetine has an anti-inflammatory effect by partly targeting NF-κB/AP-1. Next, conditioned medium from Vinpocetine-treated microglia protected from primary neurons. As compared with in vitro, the administration of Vinpocetine in hypoxic mice also inhibited inflammatory molecules, indicating that Vinpocetine as a unique anti-inflammatory agent may be beneficial for the treatment of neuroinflammatory diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call