Abstract

Gastric cancer (GC) is one of the most common human cancers. Genes expressed only in cancer tissue, especially on the cell membrane, will be useful biomarkers for cancer diagnosis and therapeutics. To identify novel genes encoding transmembrane protein specifically expressed in GC, we generated an Escherichia coli ampicillin secretion trap (CAST) library from diffuse-type GC cell line MKN-45. CAST is a survival-based signal sequence trap method that exploits the ability of mammalian signal sequences to confer ampicillin resistance to a mutant β-lactamase lacking the endogenous signal sequence. By sequencing 1,536 colonies, we identified 23 genes encoding the transmembrane protein present in GC. Among these genes, TSPAN8 (also known as CO-029 and TM4SF3) gene, which encodes transmembrane protein tetraspanin 8, was emphasized as a candidate. Immunohistochemical analysis of tetraspanin 8 in human GC tissues revealed that 72 (34%) of 210 GC cases were positive for tetraspanin 8, and microvessel density was significantly higher in tetraspanin 8-positive GC than in tetraspanin 8-negative GC. Furthermore, univariate and multivariate analyses revealed that tetraspanin 8 expression is an independent prognostic classifier of patients with GC. TSPAN8 knockdown by siRNA reduced the invasion of GC cell line. The reduction of invasiveness was retrieved by the tetraspanin 8-containing exosome. These results suggest that tetraspanin 8 is involved in tumor progression and is an independent prognostic classifier in patients with GC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call