Abstract

Integrating molecular-targeted agents into combination chemotherapy is transformative for enhancing treatment outcomes in cancer. However, realizing the full potential of this approach requires a clear comprehension of the genetic dependencies underlying drug synergy. While the interactions between conventional chemotherapeutics are well-explored, the interplay of molecular-targeted agents with conventional chemotherapeutics remains a frontier in cancer treatment. Hence, we leveraged a powerful functional genomics approach to decode genomic dependencies that drive synergy in molecular-targeted agent/chemotherapeutic combinations in gastric adenocarcinoma, addressing a critical need in gastric cancer therapy. We screened pharmacological interactions between fifteen molecular-targeted agent/conventional chemotherapeutic pairs in gastric adenocarcinoma cells, and examined the genome-scale genetic dependencies of synergy integrating genome-wide CRISPR screening with the shRNA-based signature assay. We validated the synergy in cell death using fluorescence-based and lysis-dependent inference of cell death kinetics assay, and validated the genetic dependencies by single-gene knockout experiments. Our combination screen identified SN-38/erlotinib as the drug pair with the strongest synergism. Functional genomics assays unveiled a genetic dependency signature of SN-38/erlotinib identical to SN-38. Remarkably, the enhanced cell death with improved kinetics induced by SN-38/erlotinib was attributed to erlotinib's off-target effect, inhibiting ABCG2, rather than its on-target effect on EGFR. In the era of precision medicine, where emphasis on primary drug targets prevails, our research challenges this paradigm by showcasing a robust synergy underpinned by an off-target dependency. Further dissection of the intricate genetic dependencies that underlie synergy can pave the way to developing more effective combination strategies in gastric cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.