Abstract
Deep learning faces challenges in the surface defect segmentation of strip steel. Firstly, insufficient processing of feature maps leads to the loss of task-specific feature information. Secondly, the segmentation of defects with long-tail distributions is not accurate enough. To address these issues, a pixel-level deep segmentation method called task-specific encoder–decoder network (TSEDNet) is proposed to construct an end-to-end defect segmentation model. TSEDNet includes the encoder-multi-decoder structure based on domain knowledge settings tailored to specific tasks, which can achieve effective feature representation and significantly reduce the impact of imbalanced defect quantities. Additionally, a novel metric learning method is introduced to optimize decoder selection. Furthermore, the feature fusion module based on metric learning is proposed to utilize general features for restoring task-specific details, thereby enhancing pixel-level segmentation accuracy. Through experiments and industrial validation, the defect segmentation network demonstrates superior performance compared to other advanced segmentation methods and proves its applicability in practical scenarios.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have