Abstract

In this paper we employ a recent proposal of C. Tsallis and formulate the first law of thermodynamics for gravitating systems in terms of the extensive but non-additive entropy. We pay a particular attention to an integrating factor for the heat one-form and show that in contrast to conventional thermodynamics it factorizes into thermal and entropic part. Ensuing two laws of thermodynamics imply Tsallis cosmology, which is then subsequently used to address the observed discrepancy between current bound on the Dark Matter relic abundance and present IceCube data on high-energy neutrinos. To resolve this contradiction we keep the conventional minimal Yukawa-type interaction between standard model and Dark Matter particles but replace the usual Friedmann field equations with Tsallis-cosmology-based modified Friedmann equations. We show that when the Tsallis scaling exponent delta sim 1.57 (or equivalently, the holographic scaling exponent alpha sim 3.13) the aforementioned discrepancy disappears.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.