Abstract
This research is concerned with the fusion of artificial intelligence (AI) and machine learning within multi-hierarchical caching systems, specifically targeting vehicular and edge caching domains. This study introduces an innovative architecture harmonizing Thompson sampling learning-based caching policies with advanced vehicle clustering and content-popularity prediction methods (TS-MMCM). Simulations show substantial performance improvements and a big impact of the proposed approach on system efficiency in dynamic network environments. The proposal demonstrates a notable gain in cache hit rates and decreased latency levels, highlighting the potential of AI to improve caching techniques in dynamic network environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Telecommunications and Information Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.