Abstract

This paper looks at issues involved in providing quality-of-service (QoS) support in a dynamic environment. We focus on a resource reservation-based approach, which we believe is attractive for military applications but is especially difficult in a dynamic network environment. This is because resources reserved for a particular flow may contract after they have been committed to the flow, causing the reservation to be dropped. Our approach is to expand the semantics of the reservation so that instead of being a single value indicating the level of service needed by an application, it becomes a range of service levels in which the application can operate, together with the current reserved value within that range. This provides flexibility so that reservations can be maintained as network conditions change. Rather than being forced to make a binary admit/fail decision for each flow, the network provides feedback to applications on the current reservation level. Based on this feedback, applications can adapt their behavior to what the network can support. We have developed a prototype implementation of this concept by extending the Reservation Setup Protocol (RSVP) protocol. We are currently evaluating the implementation in a testbed network where we can vary the link bandwidth. The testbed also includes several adaptive applications (audio, video, data transfer) running over the User Datagram Protocol (UDP). The paper discusses our approach, testbed, experiences to date, and current plans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.