Abstract

The fluorescence decay of tryptophan is a sensitive indicator of its local environment within a peptide or protein. We describe the use of frequency domain fluorescence spectroscopy to determine the conformational and environmental changes associated with the interaction of single tryptophan amphipathic peptides with a phospholipid surface. The five 18-residue peptides studied are based on a class A amphipathic peptide known to associate with lipid bilayers. The peptides contain a single tryptophan located at positions 2, 3, 7, 12, or 14 in the sequence. In aqueous solution, the peptides are unstructured and a triple-exponential function is required to fit the decay data. Association of the peptides with small unilamellar vesicles composed of egg phosphatidylcholine reduces the complexity of the fluorescence decays to a double exponential function, with a reduced dependence of the preexponential amplitude on peptide sequence. The data are interpreted in terms of a rotamer model in which the modality and relative proportions of the lifetime components are related to the population distribution of tryptophan χ 1 rotamers about the C α -C β bond. Peptide secondary structure and the disposition of the tryptophan residue relative to the lipid and aqueous phases in the peptide-lipid complex affect the local environment of tryptophan and influence the distribution of side-chain rotamers. The results show that measurement of the temporal decay of tryptophan emission provides a useful adjunct to other biophysical techniques for investigating peptide-lipid and protein-membrane interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.