Abstract

Room-temperature tryptophan phosphorescence was used to assess the slow (millisecond) internal dynamics of proteins in isolated human erythrocyte membranes under the action of detergents: dodecylsulfate, lauroyl sarcosinate, deoxycholate, digitonin, and Tween 20 (concentrations varied from 0.01 to 6 mM). All detergents markedly enhanced the slow internal dynamics, but the dose-response patterns were specific for each agent. The aggregate data support the idea that the slow internal dynamics is restricted in membrane proteins relative to soluble proteins mostly because of intramembrane protein association and isolation from the aqueous milieu, with a possible contribution of a more rigid secondary structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.