Abstract
Essential amino acids (EAA) and microRNAs (miRs) control biological activity of a cell. Whether EAA regulates the activity of miR has never been demonstrated. Here, as proof-of-concept, a tryptophan (Trp, an EAA) complex containing Argonaute 2 (Ago2) and miRs including miR-193a (Trp/Ago2/miR-193a) is identified. Trp binds miR-193a-3p and interacts with Ago2. Trp/Ago2/miR-193a increases miR-193a-3p activity via enhancing Argonaute 2 (Ago2) RNase activity. Other miRs including miR-103 and miR-107 in the Trp complex enhance miR-193a activity by targeting the same genes. Mechanistically, the Trp/Ago2/miR-193a complex interacts with Trp-binding pockets of the PIWI domain of Ago2 to enhance Ago2 mediated miR activity. This newly formed Ago2/Trp/miR-193a-3p complex is more efficient than miR-193a-3p alone in inhibiting the expression of targeted genes and inhibiting colon cancer liver metastasis. The findings show that Trp regulates miR activity through communication with the RNA-induced silencing complexes (RISC), which provides the basis for tryptophan based miR therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.