Abstract
Large language models (LLMs) have transformed Natural Language Processing (NLP) by enabling robust text generation and understanding. However, their deployment in sensitive domains like healthcare, finance, and legal services raises critical concerns about privacy and data security. This paper proposes a comprehensive framework for embedding trust mechanisms into LLMs to dynamically control the disclosure of sensitive information. The framework integrates three core components: User Trust Profiling, Information Sensitivity Detection, and Adaptive Output Control. By leveraging techniques such as Role-Based Access Control (RBAC), Attribute-Based Access Control (ABAC), Named Entity Recognition (NER), contextual analysis, and privacy-preserving methods like differential privacy, the system ensures that sensitive information is disclosed appropriately based on the user’s trust level. By focusing on balancing data utility and privacy, the proposed solution offers a novel approach to securely deploying LLMs in high-risk environments. Future work will focus on testing this framework across various domains to evaluate its effectiveness in managing sensitive data while maintaining system efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.