Abstract
Authorization or access control limits the actions a user may perform on a computer system, based on predetermined access control policies, thus preventing access by illegitimate actors. Access control for the Internet of Things (IoT) should be tailored to take inherent IoT network scale and device resource constraints into consideration. However, common authorization systems in IoT employ conventional schemes, which suffer from overheads and centralization. Recent research trends suggest that blockchain has the potential to tackle the issues of access control in IoT. However, proposed solutions overlook the importance of building dynamic and flexible access control mechanisms. In this paper, we design a decentralized attribute-based access control mechanism with an auxiliary Trust and Reputation System (TRS) for IoT authorization. Our system progressively quantifies the trust and reputation scores of each node in the network and incorporates the scores into the access control mechanism to achieve dynamic and flexible access control. We design our system to run on a public blockchain, but we separate the storage of sensitive information, such as user’s attributes, to private sidechains for privacy preservation. We implement our solution in a public Rinkeby Ethereum test-network interconnected with a lab-scale testbed. Our evaluations consider various performance metrics to highlight the applicability of our solution for IoT contexts.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have