Abstract

Cooperation among cognitive radios for spectrum sensing is deemed essential for environments with deep shadows. In this paper, we study cooperative spectrum sensing for cognitive radio ad hoc networks where there is no fusion center to aggregate the information from various secondary users. We propose a novel consensus-inspired cooperative sensing scheme based on linear iterations that is fully distributed and low-cost. In addition, the tradeoffs on the number of consensus iterations are explored for scenarios with different shadow fading characteristics. Furthermore, we model insistent spectrum sensing data falsification (ISSDF) attack aimed at consensus-based iterative schemes and show its destructive effect on the cooperation performance which accordingly results in reduced spectrum efficiency and increased interference with primary users. We propose a trust management scheme to mitigate these attacks and evaluate the performance improvement through extensive Monte Carlo simulations for large-scale cognitive radio ad hoc networks in TV white space. Our proposed trust management reduces the harm of a set of collusive ISSDF attackers up to two orders of magnitude in terms of missed-detection and false alarm error rates. Moreover, in a hostile environment, integration of trust management into cooperative schemes considerably relaxes the sensitivity requirements on the cognitive radio devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call