Abstract
Joint estimation of spin density R2* decay and OFF-resonance frequency maps is very useful in many magnetic resonance imaging applications. The standard multi-echo approach can achieve high accuracy but requires a long acquisition time for sampling multiple k-space frames. There are many approaches to accelerate the acquisition. Among them, single-shot or multi-shot trajectory-based sampling has recently drawn attention due to its fast data acquisition. However, this sampling strategy destroys the Fourier relationship between k-space and images, leading to a great challenge for the reconstruction. In this paper, we present two trust region methods based on two different linearization strategies for the nonlinear signal model. A trust region is defined as a local area in the variable space where a local linear approximation is trustable. In each iteration, the method minimizes a local approximation within a trust region so that the step size can be kept in a suitable scale. A continuation scheme is applied to reduce the regularization gradually over the parameter maps and facilitates convergence from poor initializations. The two trust region methods are compared with the two other previously proposed methods--the nonlinear conjugate gradients and the gradual refinement algorithm. Experiments based on various synthetic data and real phantom data show that the two trust region methods have a clear advantage in both speed and stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.