Abstract

The trunk borer is a great danger to forests because of its strong concealment, long lag and great destructiveness. In order to improve the early monitoring ability of trunk borers, the representative Agrilus planipennis Fairmaire was selected as the research object. The convolutional neural network named TrunkNet was designed to identify the activity sounds of Agrilus planipennis Fairmaire larvae. The activity sounds were recorded as vibration signals in audio form. The detector was used to collect the activity sounds of Agrilus planipennis Fairmaire larvae in the wood segments and some typical outdoor noise. The vibration signal pulse duration is short, random and high energy. TrunkNet was designed to train and identify vibration signals of Agrilus planipennis Fairmaire. Over the course of the experiment, the test accuracy of TrunkNet was 96.89%, while MobileNet_V2, ResNet18 and VGGish showed 84.27%, 79.37% and 70.85% accuracy, respectively. TrunkNet based on the convolutional neural network can provide technical support for the automatic monitoring and early warning of the stealthy tree trunk borers. The work of this study is limited to a single pest. The experiment will further focus on the applicability of the network to other pests in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call