Abstract

Varicella-zoster virus (VZV) is a highly infectious agent responsible for both varicella and herpes zoster disease. Despite high efficacy, there remain safety and accessibility concerns with the licensed vaccines. Here, we sought to produce a VZV gE immunogen using an E. coli expression system. We found that the soluble expression and yield of gE protein could be enhanced via C-terminal truncations to the protein, thereby facilitating a robust and scalable purification process for the purpose of vaccine manufacturing. The lead truncated gE (aa 31-358), hereafter referred to as tgE, was a homogenous monomer in solution and showed excellent antigenicity. Finally, we assessed and compared the immunogenicity of tgE with commercial vOka LAV and Shingrix vaccine. We found that aluminum-adjuvanted tgE was immunogenic as compared with vOka LAV. When adjuvanted with AS01B, a two-dose immunization of tgE showed comparable or better potency in antibody responses and cell-mediated immunity with those of the Shingrix vaccine at the same dosage, especially in terms of the proportion of IFN-γ-expressing CD4+ T cells. In conclusion, this method of E. coli-mediate tgE expression offers a cost-effective and scalable strategy to generate an ideal VZV gE immunogen for the development of both varicella and zoster vaccines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.