Abstract
We apply the cobordism hypothesis with singularities to the case of affine Rozansky–Witten models, providing a construction of extended TQFTs that includes all line and surface defects. On a technical level, this amounts to proving that the associated homotopy 2-category is pivotal, and to systematically employing its 3-dimensional graphical calculus. This in particular allows us to explicitly calculate state spaces for surfaces with arbitrary defect networks. As specific examples we discuss symmetry defects which can be used to model non-trivial background gauge fields, as well as boundary conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have