Abstract

BackgroundLimb length Inequality (LLI) in children and adults may affect posture, gait, and several truncal parameters, and it can cause spinal scoliosis. In literature, however, there is a paucity of assessment of truncal and spinal changes due to mild LLI in children. This report presents children with LLI, and it aims to provide information in pelvic imbalance, spinal posture, and scoliotic curve, using surface topography analysis which is a novel methodological approach for this condition.Study designThis is an ongoing prospective research study on patient series suffering LLI.Material and methodTwenty children, attending the Scoliosis Clinic of the department, 7 boys, 13 girls, 9–15 years old, range 7.5–15, mean 15.5 years, having mild LLI, were assessed. The LLI was 0.5 to 2 cm, mean 1.2 cm. There was not any post-traumatic LLI. We evaluated the LLI in correlation to pelvic and spinal posture parameters. The 4D Formetric DIERS apparatus (4DF) was used for the surface topography assessment. The following were assessed: in the coronal plane, the coronal imbalance, the pelvic obliquity, the lateral deviation, and the 4DF scoliosis angle; in the sagittal plane, the sagittal imbalance, the 4DF kyphotic angle, the kyphotic apex, the 4DF lordotic angle, the lordotic apex, the pelvic tilt, and the trunk inclination; and in the transverse plane, the pelvis rotation, the pelvic torsion, the surface rotation, and the 4DF vertebral rotation. LLI was measured using a tape. The data were statistically analyzed, and reliability study for the LLI was also performed.Results/discussionThe LLI was statistically significantly correlated to the 4DF reading of pelvis rotation, pelvic tilt (pelvic obliquity), and surface rotation. The scoliometer readings (angle trunk rotation ATR or trunk inclination ATI) in the lumbar region were statistically significantly correlated to the 4DF readings of pelvic tilt (pelvic obliquity). The normally symmetric truncal parameters were also statistically significantly changed (all these deviating from the line of gravity through the vertebral prominence). Interestingly, LLI was not correlated to the scoliosis angle and the scoliometer reading at the lumbar level.The following 4DF readings are presented: in the coronal plane, the coronal imbalance, pelvic obliquity, lateral deviation, and 4DF scoliosis angle; in the sagittal plane, the sagittal imbalance, kyphotic angle, kyphotic apex, lordotic angle, lordotic apex, pelvic tilt, and trunk inclination; and in the transverse plane, the pelvic rotation, pelvic torsion, surface rotation, and vertebral rotation.ConclusionsPrevious studies have reported the results after simulation of LLI in order to evaluate the effects on the pelvic balance and spinal posture parameters. This report is not a LLI simulation study but it presents the effects of mild LLI on truncal changes in the main cardinal planes in children suffering LLI. These changes undoubtedly affect not only the standing truncal posture but also the gait’s economy as well.As mild LLI affects the pelvic balance and spinal posture parameters, our therapeutic approach is that mild LLI (less than 2.0 cm) has to be corrected using shoe elevation, in order to equalize the pelvic obliquity and, consequently, the spinal posture parameters.

Highlights

  • A leg length inequality (LLI) or discrepancy is a difference between the lengths of the legs.LLI can be subdivided into two etiological groups: a structural LLI (SLLI) which is associated with a shortening of bony structures [1] and a functional LLI (FLLI) [1, 2] which is the result of altered mechanics of the lower extremities, muscle, or joint contracture

  • Previous studies have reported the results after simulation of LLI in order to evaluate the effects on the pelvic balance and spinal posture parameters

  • This report is not a LLI simulation study but it presents the effects of mild LLI on truncal changes in the main cardinal planes in children suffering LLI

Read more

Summary

Introduction

A leg length inequality (LLI) or discrepancy is a difference between the lengths of the legs.LLI can be subdivided into two etiological groups: a structural LLI (SLLI) which is associated with a shortening of bony structures (congenital or acquired) [1] and a functional LLI (FLLI) [1, 2] which is the result of altered mechanics of the lower extremities, muscle, or joint contracture. Several reports presented the effects of LLI on idiopathic scoliosis [3] and pelvic imbalance progression, low back pain, osteoarthritis of the hip, stress fractures, aseptic loosening of hip prostheses in adults, forces admitted through the hip, standing balance, and walking and running energy consumption [2, 4–8]. LLI critically affects the dynamics of lower limb growth, and it reflects the discrepancy in the growing skeleton. Several studies of asymptomatic children or adults with LLI more than 2.0 cm report scoliosis and pelvic asymmetry [8, 9]. Limb length Inequality (LLI) in children and adults may affect posture, gait, and several truncal parameters, and it can cause spinal scoliosis. This report presents children with LLI, and it aims to provide information in pelvic imbalance, spinal posture, and scoliotic curve, using surface topography analysis which is a novel methodological approach for this condition

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call