Abstract

Gaussian-beam depth migration and related beam migration methods can image multiple arrivals, so they provide an accurate, flexible alternative to conventional single-arrival Kirchhoff migration. Also, they are not subject to the steep-dip limitations of many (so-called wave-equation) methods that use a one-way wave equation in depth to downward-continue wavefields. Previous presentations of Gaussian-beam migration have emphasized its kinematic imaging capabilities without addressing its amplitude fidelity. We offer two true-amplitude versions of Gaussian-beam migration. The first version combines aspects of the classic derivation of prestack Gaussian-beam migration with recent results on true-amplitude wave-equation migration, yields an expression involving a crosscorrelation imaging condition. To provide amplitude-versus-angle (AVA) information, true-amplitude wave-equation migration requires postmigration mapping from lateral distance (between image location and source location) to subsurface opening angle. However, Gaussian-beam migration does not require postmigration mapping to provide AVA data. Instead, the amplitudes and directions of the Gaussian beams provide information that the migration can use to produce AVA gathers as part of the migration process. The second version of true-amplitude Gaussian-beam migration is an expression involving a deconvolution imaging condition, yielding amplitude-variation-with-offset (AVO) information on migrated shot-domain common-image gathers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call