Abstract

Regulation of cytoplasmic free calcium concentration [Ca(2+)]i is a key factor for the maintenance of cellular homeostasis in different cell types, including lymphocytes. During T lymphocyte activation as well as production of cytokines, sustained Ca(2+) influx is essential, however, it remains unclear how this influx is regulated. Previously, we reported the expression and functional activity of calcium channels TRPV5 and TRPV6 (transient receptor potential vanilloid type 5 and 6) in human leukemia Jurkat T cells. In this study, using single channel recordings, we found that activity of calcium channels TRPV5/V6 in Jurkat T cells is subject to strong control of external stimuli such as a low- or high-pH stressor. We showed that extracellular acidic pH reduces the activity of TRPV5/V6 channels, whereas alkaline pH increases the activity of TRPV5/V6 channels in Jurkat T cells. Using calcium imaging, we found that Ca(2+) influx in Jurkat T cells displayed sensitivity to extracellular pH, similar to that shown for the calcium channels TRPV5/V6. Double immunostaining of Jurkat T cells revealed that TRPV5 and TRPV6 channels colocalize with clathrin and the early endocytosis marker, EEA1. Moreover, we demonstrated that a specific inhibitor of clathrin-dependent endocytosis, dynasore, blocked TRPV5/V6 activity, and Ca(2+) influx into Jurkat T cells. Overall, our findings indicate that strong environmental cues may affect the intracellular calcium level in Jurkat T cells by influencing the traffic of TRPV5/V6 channels in lymphocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call